Frobenius Norm and Low Rank Approaximation

1.Brief Singular Value Decomposition (SVD)

We first need to compute the SVD before going for low rank approximation. SVD is factorization of m x p matrix(A).

\[A = USV^T \]

Where,

  • U and V is orthogonal matrix, where U is m\(\times\)p and V is p\(\times\)n matrix

\[U = [U_1,U_2...,U_p]\]
\[V = [V_1,V_2,...V_p]\]
  • S is singular diagonal of p x p matrix

\(S =\begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_p \end{pmatrix}\)

\(A = [U_1,U_2...,U_p] {\begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_p \end{pmatrix} } [V_1,V_2,...V_p] = \sum_{j=0}^p\sigma_jU_jV_j^T \)

The vector \({(U_j)}_{j=1}^p\) and \({(V_j)}_{j=1}^p\) are left and right singular vectors, forms othonormal of the range \(A\) and \(A^T\) respectively. where as \({(\sigma_j)}_{j=1}^p\) are the singular values of A. [Note - \(\sigma_1 \ge \sigma_2 \ge.....\ge \sigma_p \ge 0 \)]

2.Frobenius norm

Frobenius norm of matrix A is denoted as \(||A||_F\) , can be formulated as

  • \( A = (\sum_{ij}|A_{ij}|^2)^{1/2}\)
    also \(∑||A_{*i}||_2^2 = ∑||A_{i*}||_2^2 \)

  • For any row \(a_j\) of matrix \(A\)

\(||a_j||_2^2 == \sum_{i=1}^r(a_j^TV_i)\) , where \(V_i=i^{th}s-vector\)

\(||a_j||_2^2 = \sum_{j=1}^n \sum_{i=1}^r(a_j^TV_i)^2 = \sum_{i=1}^r|AV_i|_2^2 = \sum_{i=1}^r\sigma_i^2\)

therefore,

\(||A||_F^2 = \sum_{i=1}^r\sigma_i^2\)

3. Low rank approaximation

Let metrix \(A\in \mathbb{R}^{m{\times}n}\) with rank \(\le min(m,n)\). THe low rank approximation of \(A\) is to find another matrix B with rank-k [\(B_k\in\mathbb{R}^{m{\times}n}\)] which approximate \(A\) and has less rank than \(A\).

  • To find the best \(B_k\) , and how closely \(B_k\) approximates \(A\). we can use the concept of frobenius norm as followed

\(||A-B_k|| = min||A-B_k||_F: A\in \mathbb{R}^{m{\times}n},r(B_k) \le k\)

  • SVD based low-rank approximation -
    we aware of following equation or term from SVD

    \(A = USV^T = \sum_{j=0}^p\sigma_jU_jV_j^T \)

The best-\(k\) approximation for matrix \(A\) is given by

\(A_k =\sum_{j=1}^k\sigma_jU_jV_j^T \) , where \(k \le rank(A)\) , where \(U_k = [U_1, U_2, ..., U_k] , V_k = [V_1, V_2, ..., V_k]\ and\ S_k = diag[\sigma_1, \sigma_2, ..., \sigma_k]\)

../_images/Svd.jpeg

Fig. 35 Low rank approaximation

using frobenius norms
\(||A-A_k||_F=||A-B||_F\) , where \(rank(B)\le k\)
In terms of singular value,
\(||A-A_k||_F = (\sum_{j=k+1}^p\sigma_j^2)^{1/2}\)

  • simple example -
    To find rank-2 approximation of matrix A
    \(A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}\)

Now

\(A = USV_T\)
\( = \begin{pmatrix} 0.91 & 0.42 & 0.02 \\ 0.41 & -0.87 & -0.26 \\ 0.09 & -0.24 & 0.97 \end{pmatrix} \times \begin{pmatrix} 4.04 & 0 & 0 \\ 0 & 1.7 & 0 \\ 0 & 0 & 0.87 \end{pmatrix} \times \begin{pmatrix} 0.67 & 0.73 & 0.08 \\ 0.65 & -0.54 & -0.53 \\ 0.35 & -0.41 & 0.84 \end{pmatrix}^T\)

\(A_2 = \begin{pmatrix} 0.91 & 0.42 \\ 0.41 & -0.87 \\ 0.09 & -0.24 \end{pmatrix} \times \begin{pmatrix} 4.04 & 0 \\ 0 & 1.7 \end{pmatrix} \times \begin{pmatrix} 0.67 & 0.73 \\ 0.65 & -0.54 \\ 0.35 & -0.41 \end{pmatrix}^T\)

\(A_2 = \begin{pmatrix} 2.99 & 2.01 & 0.98 \\ 0.02 & 1.88 & 1.1 \\ -0.07 & 0.45 & 0.29 \end{pmatrix}\)

The above matrix A is of rank 2, which is requirement.

Author(s): Tare Adithya,Abhinav Singh,Devendhar